Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Phenyl-1*H*-imidazol-3-ium hydrogen fumarate_fumaric acid (2/1)

Hong Guo,* Xin Zhang and Jian-Xia Li

Institute of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China Correspondence e-mail: gh2103@163.com

Received 15 December 2011; accepted 8 February 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.091; data-to-parameter ratio = 12.8.

The asymmetric unit of the title compound, $C_9H_9N_2^+$.- $C_4H_3O_4^-$.0.5 $C_4H_4O_4$, consists of one 2-phenylimidazolium cation, one hydrogen fumarate anion and half a fumaric acid molecule, which lies on an inversion center. N-H···O and O-H···O hydrogen bonds connect the cations, anions and fumaric acid molecules into sheets parallel to the (102) plane.

Related literature

For similar structures, see: Jiang (2009); Song (2011); Xia & Yao (2010).

Experimental

Crystal data $C_9H_9N_2^+ \cdot C_4H_3O_4^- \cdot 0.5C_4H_4O_4$ $M_r = 318.28$

Monoclinic, $P2_1/c$ a = 9.572 (3) Å b = 19.276 (4) Å c = 8.289 (5) Å $\beta = 106.480 (3)^{\circ}$ $V = 1466.6 (10) \text{ Å}^{3}$ Z = 4

Data collection

Oxford Diffraction Gemini R Ultra
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	209 parameters
$wR(F^2) = 0.091$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
2675 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O3−H3A…O2	0.82	1.75	2.5721 (14)	176
$O5-H5A\cdots O6^{i}$	0.82	1.83	2.6360 (14)	169
$N1 - H1A \cdots O2$	0.86	1.98	2.7903 (15)	157
$N2-H2A\cdotsO1^{ii}$	0.86	1.86	2.7106 (14)	168

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2037).

References

Jiang, P. (2009). Acta Cryst. E65, o2177.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, J.-N. (2011). Acta Cryst. E67, 01773.

Xia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, 0649.

Mo $K\alpha$ radiation

 $0.18 \times 0.15 \times 0.14$ mm

Diffraction, 2006) $T_{\min} = 0.980, T_{\max} = 0.984$

11042 measured reflections 2675 independent reflections 1963 reflections with $I > 2\sigma(I)$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 293 K

supplementary materials

Acta Cryst. (2012). E68, o1021 [doi:10.1107/S1600536812005557]

2-Phenyl-1*H*-imidazol-3-ium hydrogen fumarate-fumaric acid (2/1)

Hong Guo, Xin Zhang and Jian-Xia Li

Comment

Noncovalent hydrogen-bonding interactions have attracted great interest for chemists because of their physicochemical properties (Jiang, 2009). 2-Phenylimidazole can be used to form various supramolecular architectures with anions such as acetate (Xia & Yao, 2010) and hydrogen oxalate (Song, 2011). In this work, we report the crystal structure of the title compound prepared from 2-phenylimidazole and fumaric acid.

The asymmetric unit of the title compound contains one 2-phenylimidazolium cation, one hydrogen fumarate anion and a half of fumaric acid (Fig. 1). The fumaric acid molecule lies on an inversion center. N—H…O and O—H…O hydrogen bonds connect the cations, anions and fumaric acid molecules into sheets parallel to the (1 0 2) plane (Fig. 2, Table 1).

Experimental

2-Phenylimidazole (2 mmol), fumaric acid (1 mmol) and ethanol (15 ml) were mixed. Colorless crystals were obtained by slow evaporation of the solution at room temperature after three days.

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93, N—H = 0.86 and O—H = 0.82 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$ or $1.5U_{eq}(O)$.

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis CCD* (Oxford Diffraction, 2006); data reduction: *CrysAlis CCD* (Oxford Diffraction, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and Mercury (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Dashed lines denote hydrogen bonds. [Symmetry code: (i) -x, 1-y, 1-z.]

Figure 2

The two-dimensional network connected by hydrogen bonds (dashed lines).

2-Phenyl-1*H*-imidazol-3-ium 3-carboxyprop-2-enoate-fumaric acid (2/1)

Crystal data	
$C_9H_9N_2^+ \cdot C_4H_3O_4^- \cdot 0.5C_4H_4O_4$	F(000) = 664
$M_r = 318.28$	$D_{\rm x} = 1.441 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2675 reflections
a = 9.572 (3) Å	$\theta = 2.2 - 25.3^{\circ}$
b = 19.276 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 8.289 (5) Å	T = 293 K
$\beta = 106.480 \ (3)^{\circ}$	Block, colorless
$V = 1466.6 (10) Å^3$	$0.18 \times 0.15 \times 0.14 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Gemini R Ultra diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.0 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2006) $T_{\min} = 0.980, T_{\max} = 0.984$	11042 measured reflections 2675 independent reflections 1963 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$ $\theta_{max} = 25.3^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 11$ $k = 0 \rightarrow 23$ $l = 0 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.091$ S = 1.00 2675 reflections 209 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0574P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.21$ e Å ⁻³ $\Delta\rho_{min} = -0.25$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0068 (12)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.30636 (17)	0.70313 (7)	0.15392 (19)	0.0466 (4)	
H1	0.2295	0.6753	0.0948	0.056*	
C2	0.51445 (15)	0.73599 (6)	0.33290 (17)	0.0339 (3)	
C3	0.31826 (17)	0.77144 (7)	0.1375 (2)	0.0458 (4)	
Н3	0.2516	0.8002	0.0642	0.055*	
C4	0.65236 (15)	0.73529 (6)	0.46476 (17)	0.0361 (3)	
C5	0.71012 (18)	0.67306 (7)	0.53922 (19)	0.0441 (4)	
Н5	0.6609	0.6317	0.5041	0.053*	
C6	0.83936 (19)	0.67245 (8)	0.6642 (2)	0.0531 (4)	
H6	0.8772	0.6306	0.7138	0.064*	
C7	0.91375 (19)	0.73335 (8)	0.7170 (2)	0.0559 (4)	
H7	1.0020	0.7325	0.8011	0.067*	
C8	0.85745 (19)	0.79517 (8)	0.6455 (2)	0.0554 (4)	
H8	0.9075	0.8363	0.6817	0.067*	
C9	0.72735 (18)	0.79677 (7)	0.52033 (19)	0.0464 (4)	

Н9	0.6894	0.8389	0.4728	0.056*
C10	0.50312 (14)	0.48691 (6)	0.25178 (15)	0.0284 (3)
C11	0.63137 (14)	0.50545 (6)	0.19048 (15)	0.0316 (3)
H11	0.6584	0.5519	0.1930	0.038*
C12	0.70748 (14)	0.46016 (7)	0.13372 (15)	0.0329 (3)
H12	0.6801	0.4138	0.1308	0.039*
C13	0.83360 (14)	0.47805 (7)	0.07425 (15)	0.0299 (3)
C14	0.13846 (14)	0.54984 (6)	0.41335 (15)	0.0306 (3)
C15	0.01299 (14)	0.53111 (7)	0.47557 (15)	0.0325 (3)
H15	-0.0525	0.5661	0.4804	0.039*
N1	0.42847 (13)	0.68174 (5)	0.27399 (15)	0.0414 (3)
H1A	0.4472	0.6396	0.3068	0.050*
N2	0.44703 (13)	0.79138 (5)	0.24890 (14)	0.0389 (3)
H2A	0.4796	0.8332	0.2627	0.047*
01	0.46797 (11)	0.42536 (4)	0.25506 (12)	0.0448 (3)
O2	0.43619 (9)	0.53724 (4)	0.29443 (11)	0.0356 (2)
O3	0.21778 (10)	0.49744 (5)	0.39383 (12)	0.0462 (3)
H3A	0.2850	0.5114	0.3593	0.055*
O4	0.16258 (11)	0.60952 (5)	0.38435 (13)	0.0482 (3)
O5	0.90474 (11)	0.42773 (5)	0.03852 (12)	0.0447 (3)
H5A	0.9724	0.4427	0.0065	0.054*
<u>O6</u>	0.86586 (11)	0.54051 (5)	0.06280 (12)	0.0453 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³
C1	0.0451 (10)	0.0360 (8)	0.0582 (9)	-0.0057 (7)	0.0139 (8)	-0.0014 (7)
C2	0.0424 (9)	0.0209 (6)	0.0464 (8)	-0.0019 (6)	0.0256 (7)	0.0009 (6)
C3	0.0454 (10)	0.0354 (8)	0.0562 (9)	0.0006 (6)	0.0137 (8)	0.0061 (7)
C4	0.0423 (9)	0.0277 (7)	0.0453 (8)	-0.0013 (6)	0.0241 (7)	0.0002 (6)
C5	0.0561 (11)	0.0288 (7)	0.0516 (9)	0.0015 (6)	0.0221 (8)	0.0008 (6)
C6	0.0614 (12)	0.0431 (9)	0.0549 (10)	0.0113 (8)	0.0165 (9)	0.0079 (7)
C7	0.0523 (11)	0.0583 (11)	0.0544 (10)	0.0015 (8)	0.0106 (8)	0.0029 (8)
C8	0.0592 (12)	0.0439 (9)	0.0607 (10)	-0.0144 (8)	0.0131 (9)	-0.0017 (8)
C9	0.0550 (11)	0.0289 (8)	0.0565 (9)	-0.0039 (7)	0.0176 (8)	0.0036 (7)
C10	0.0279 (7)	0.0247 (7)	0.0349 (7)	0.0016 (5)	0.0125 (6)	0.0001 (5)
C11	0.0305 (8)	0.0263 (6)	0.0411 (8)	-0.0017 (5)	0.0150 (6)	-0.0001 (5)
C12	0.0300 (8)	0.0292 (7)	0.0428 (8)	-0.0025 (5)	0.0156 (6)	-0.0018 (6)
C13	0.0266 (7)	0.0314 (7)	0.0332 (7)	0.0007 (6)	0.0109 (6)	-0.0024 (5)
C14	0.0297 (7)	0.0290 (7)	0.0351 (7)	-0.0016 (6)	0.0122 (6)	-0.0021 (5)
C15	0.0279 (7)	0.0335 (6)	0.0394 (7)	0.0011 (6)	0.0150 (6)	-0.0023 (6)
N1	0.0488 (8)	0.0220 (6)	0.0566 (8)	-0.0036 (5)	0.0202 (6)	0.0024 (5)
N2	0.0456 (8)	0.0211 (5)	0.0543 (7)	-0.0024 (5)	0.0211 (6)	0.0033 (5)
01	0.0463 (6)	0.0222 (5)	0.0781 (7)	-0.0021 (4)	0.0375 (6)	-0.0028 (4)
O2	0.0352 (6)	0.0235 (5)	0.0566 (6)	0.0021 (4)	0.0271 (5)	-0.0006 (4)
03	0.0433 (6)	0.0322 (5)	0.0782 (7)	0.0002 (4)	0.0418 (6)	0.0038 (5)
O4	0.0498 (7)	0.0303 (6)	0.0741 (7)	-0.0033 (4)	0.0329 (6)	0.0027 (5)
O5	0.0381 (6)	0.0384 (6)	0.0694 (7)	0.0005 (4)	0.0343 (5)	-0.0041 (5)
06	0.0446 (6)	0.0320 (6)	0.0692 (7)	-0.0033 (4)	0.0324 (5)	-0.0017 (5)

Geometric parameters (Å, °)

С1—С3	1.332 (2)	C10—O1	1.2357 (14)
C1—N1	1.3663 (19)	C10—O2	1.2669 (15)
C1—H1	0.9300	C10—C11	1.4989 (18)
C2—N1	1.3346 (16)	C11—C12	1.3072 (18)
C2—N2	1.3366 (17)	C11—H11	0.9300
C2—C4	1.456 (2)	C12—C13	1.4686 (18)
C3—N2	1.3687 (19)	C12—H12	0.9300
С3—Н3	0.9300	C13—O6	1.2532 (15)
C4—C5	1.3899 (19)	C13—O5	1.2676 (15)
С4—С9	1.3944 (19)	C14—O4	1.2108 (15)
C5—C6	1.370 (2)	C14—O3	1.3009 (15)
С5—Н5	0.9300	C14—C15	1.4799 (18)
C6—C7	1.378 (2)	C15—C15 ⁱ	1.312 (3)
С6—Н6	0.9300	C15—H15	0.9300
С7—С8	1.372 (2)	N1—H1A	0.8592
С7—Н7	0.9300	N2—H2A	0.8602
С8—С9	1.377 (2)	O3—H3A	0.8203
С8—Н8	0.9300	O5—H5A	0.8193
С9—Н9	0.9300		
C3—C1—N1	107.00 (13)	O1—C10—O2	124.52 (12)
С3—С1—Н1	126.5	O1—C10—C11	119.39 (11)
N1-C1-H1	126.5	O2—C10—C11	116.08 (11)
N1-C2-N2	106.19 (12)	C12—C11—C10	123.81 (12)
N1-C2-C4	126.96 (11)	C12—C11—H11	118.1
N2—C2—C4	126.84 (11)	C10-C11-H11	118.1
C1—C3—N2	107.20 (13)	C11—C12—C13	124.00 (12)
С1—С3—Н3	126.4	C11—C12—H12	118.0
N2—C3—H3	126.4	C13—C12—H12	118.0
C5—C4—C9	118.96 (14)	O6—C13—O5	123.87 (12)
C5—C4—C2	120.21 (12)	O6—C13—C12	119.64 (11)
C9—C4—C2	120.82 (12)	O5—C13—C12	116.49 (11)
C6—C5—C4	120.22 (13)	O4—C14—O3	124.20 (12)
С6—С5—Н5	119.9	O4—C14—C15	121.35 (12)
C4—C5—H5	119.9	O3—C14—C15	114.45 (11)
С5—С6—С7	120.47 (14)	C15 ⁱ —C15—C14	125.05 (16)
С5—С6—Н6	119.8	C15 ⁱ —C15—H15	117.5
С7—С6—Н6	119.8	C14—C15—H15	117.5
C8—C7—C6	119.90 (16)	C2—N1—C1	109.96 (11)
С8—С7—Н7	120.0	C2—N1—H1A	125.0
С6—С7—Н7	120.0	C1—N1—H1A	125.1
С7—С8—С9	120.39 (14)	C2—N2—C3	109.65 (11)
С7—С8—Н8	119.8	C2—N2—H2A	125.2
С9—С8—Н8	119.8	C3—N2—H2A	125.2
C8—C9—C4	120.05 (13)	C14—O3—H3A	109.4
С8—С9—Н9	120.0	C13—O5—H5A	109.5
С4—С9—Н9	120.0		

N1 - C1 - C3 - N2	-0.55(17)	01 - C10 - C11 - C12	24(2)
$\mathbf{N}_{1} \mathbf{C}_{2} \mathbf{C}_{4} \mathbf{C}_{5}$	24(2)	$O_2 = C_{10} = C_{11} = C_{12}$	176.29(12)
N1 - C2 - C4 - C3	2.4 (2)	02-010-011-012	-1/0.38(12)
N2—C2—C4—C5	-179.07 (12)	C10-C11-C12-C13	-179.71 (11)
N1-C2-C4-C9	-176.51 (13)	C11—C12—C13—O6	-6.1 (2)
N2-C2-C4-C9	2.0 (2)	C11—C12—C13—O5	173.31 (12)
C9—C4—C5—C6	-0.5 (2)	O4-C14-C15-C15 ⁱ	-173.42 (16)
C2—C4—C5—C6	-179.49 (13)	O3—C14—C15—C15 ⁱ	6.5 (2)
C4—C5—C6—C7	-0.3 (2)	N2-C2-N1-C1	-0.52 (15)
C5—C6—C7—C8	0.7 (2)	C4—C2—N1—C1	178.24 (13)
C6—C7—C8—C9	-0.4 (3)	C3—C1—N1—C2	0.67 (17)
C7—C8—C9—C4	-0.4 (2)	N1—C2—N2—C3	0.17 (15)
C5—C4—C9—C8	0.9 (2)	C4—C2—N2—C3	-178.59 (12)
C2—C4—C9—C8	179.82 (13)	C1—C3—N2—C2	0.24 (16)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O3—H3 <i>A</i> ···O2	0.82	1.75	2.5721 (14)	176
O5—H5 <i>A</i> ···O6 ⁱⁱ	0.82	1.83	2.6360 (14)	169
N1—H1A···O2	0.86	1.98	2.7903 (15)	157
N2—H2A····O1 ⁱⁱⁱ	0.86	1.86	2.7106 (14)	168

Symmetry codes: (ii) -*x*+2, -*y*+1, -*z*; (iii) -*x*+1, *y*+1/2, -*z*+1/2.